2017 AMC 10B Problems/Problem 16

Revision as of 22:39, 9 October 2023 by Alex tu (talk | contribs) (Solution)

Problem

How many of the base-ten numerals for the positive integers less than or equal to $2017$ contain the digit $0$?

$\textbf{(A)}\ 469\qquad\textbf{(B)}\ 471\qquad\textbf{(C)}\ 475\qquad\textbf{(D)}\ 478\qquad\textbf{(E)}\ 481$

Solution

We can use complementary counting. There are $2017$ positive integers in total to consider, and there are $9$ one-digit integers, $9 \cdot 9 = 81$ two digit integers without a zero, $9 \cdot 9 \cdot 9 = 729$ three digit integers without a zero, and $9 \cdot 9 \cdot 9 = 729$ four-digit integers starting with a 1 without a zero. Therefore, the answer is $2017 - 9 - 81 - 729 - 729 = \boxed{\textbf{(A) }469}$.

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png