2015 AMC 12A Problems/Problem 22
Contents
Problem
For each positive integer , let
be the number of sequences of length
consisting solely of the letters
and
, with no more than three
s in a row and no more than three
s in a row. What is the remainder when
is divided by
?
Solution
One method of approach is to find a recurrence for .
Let us define as the number of sequences of length
ending with an
, and
as the number of sequences of length
ending in
. Note that
and
, so
.
For a sequence of length ending in
, it must be a string of
s appended onto a sequence ending in
of length
. So we have the recurrence:
We can thus begin calculating values of . We see that the sequence goes (starting from
):
A problem arises though: the values of increase at an exponential rate. Notice however, that we need only find
. In fact, we can use the fact that
to only need to find
. Going one step further, we need only find
and
to find
.
Here are the values of , starting with
:
Since the period is and
,
.
Similarly, here are the values of , starting with
:
Since the period is and
,
.
Knowing that and
, we see that
, and
. Hence, the answer is
.
Solution 2
We can also go straight to S(2015). We know that there are 2^2015 permutations if we do not consider the rule of "no three As or Bs in a row".
Now if the rule is considered, Assume that there the 3 As and 3Bs are in the very front. That would yield (1/2)^3 * 2^2012 * 2 permutations. Now consider where those three As or three Bs can be placed. There are 2013 places where the consecutive letter can be put. Thus there are 2^2015 - 2^2010 * 2013 permutations allowed.
Now do some calculation we can know that ,
,
, ...
, ...
. Also, from division,
. So
.
Thus, the answer is .
See Also
2015 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |