1991 AHSME Problems/Problem 23

Revision as of 13:24, 14 December 2016 by E power pi times i (talk | contribs) (Solution)

Problem

[asy] draw((0,0)--(0,2)--(2,2)--(2,0)--cycle,dot); draw((2,2)--(0,0)--(0,1)--cycle,dot); draw((0,2)--(1,0),dot); MP("B",(0,0),SW);MP("A",(0,2),NW);MP("D",(2,2),NE);MP("C",(2,0),SE); MP("E",(0,1),W);MP("F",(1,0),S);MP("H",(2/3,2/3),E);MP("I",(2/5,6/5),N); dot((1,0));dot((0,1));dot((2/3,2/3));dot((2/5,6/5)); [/asy]


If $ABCD$ is a $2\times2$ square, $E$ is the midpoint of $\overline{AB}$,$F$ is the midpoint of $\overline{BC}$,$\overline{AF}$ and $\overline{DE}$ intersect at $I$, and $\overline{BD}$ and $\overline{AF}$ intersect at $H$, then the area of quadrilateral $BEIH$ is

$\text{(A) } \frac{1}{3}\quad \text{(B) } \frac{2}{5}\quad \text{(C) } \frac{7}{15}\quad \text{(D) } \frac{8}{15}\quad \text{(E) } \frac{3}{5}$

Solution 1: Coordinate Geometry

First, we find out the coordinates of the vertices of quadrilateral $BEIH$, then use the Shoelace Theorem to solve for the area. Denote $B$ as $(0,0)$. Then $E (0,1)$. Since I is the intersection between lines $DE$ and $AF$, and since the equations of those lines are $y = \dfrac{1}{2}x + 1$ and $y = -2x + 2$, $I (\dfrac{2}{5}, \dfrac{6}{5})$. Using the same method, the equation of line $BD$ is $y = x$, so $H (\dfrac{2}{3}, \dfrac{2}{3})$. Using the Shoelace Theorem, the area of $BEIH$ is $\dfrac{1}{2}\cdot\dfrac{14}{15} = \boxed{\textbf{(C) } \dfrac{7}{15}}$.

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png