1990 IMO Problems/Problem 4

Revision as of 12:46, 30 January 2021 by Hamstpan38825 (talk | contribs)

Problem

Let $\mathbb{Q^+}$ be the set of positive rational numbers. Construct a function $f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}$ such that $f(xf(y)) = \frac{f(x)}{y}$ for all $x, y\in{Q^+}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1990 IMO (Problems) • Resources
Preceded by
Problem 3
1 2 3 4 5 6 Followed by
Problem 5
All IMO Problems and Solutions