1983 AHSME Problems/Problem 20
Revision as of 16:04, 27 January 2019 by Sevenoptimus (talk | contribs) (Fixed formatting and improved readability of the solution)
Problem 20
If and are the roots of , and and are the roots of , then is necessarily
Solution
By Vieta's Formulae, we have and . Recalling that , we have .
Also by Vieta's Formulae, we have and , and again using , we have . Using and , we therefore deduce that , which yields .
Thus, the answer is .
See Also
1983 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.