2016 USAMO Problems/Problem 3
Problem
Let be an acute triangle, and let and denote its -excenter, -excenter, and circumcenter, respectively. Points and are selected on such that and Similarly, points and are selected on such that and
Lines and meet at Prove that and are perpendicular.
Solution
There are two major steps of a proof.
1. Let be the -excenter, then are colinear. This can be proved by the Trigonometric Form of Ceva's Theorem for
2. Show that which shows This can be proved by multiple applications of the Pythagorean Thm.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
See also
2016 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |