1988 AHSME Problems/Problem 22

Revision as of 11:44, 10 August 2018 by Y.l0529 (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For how many integers $x$ does a triangle with side lengths $10, 24$ and $x$ have all its angles acute?

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ \text{more than } 7$


Solution

We first notice that the sides $10$ and $24$, can be part of $2$ different right triangles, one with sides $10,24,26$, and the other with a leg somewhere between $21$ and $22$. We now notice that if $x$ is less than or equal to $21$, one of the angles is obtuse, and that the same is the same for any value of $x$ above $26$. Thus the only integer values of $x$ that fit the conditions, are $x=22, 23, 24, \text{and }25.$ So, the answer is $\boxed{\text{A}}$

See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png