2015 AMC 12B Problems/Problem 14

Revision as of 14:02, 4 March 2015 by Pi over two (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A circle of radius 2 is centered at $A$. An equilateral triangle with side 4 has a vertex at $A$. What is the difference between the area of the region that lies inside the circle but outside the triangle and the area of the region that lies inside the triangle but outside the circle?

$\textbf{(A)}\; 8-\pi \qquad\textbf{(B)}\; \pi+2 \qquad\textbf{(C)}\; 2\pi-\dfrac{\sqrt{2}}{2} \qquad\textbf{(D)}\; 4(\pi-\sqrt{3}) \qquad\textbf{(E)}\; 2\pi-\dfrac{\sqrt{3}}{2}$

Solution

The area of the circle is $\pi \cdot 2^2 = 4\pi$, and the area of the triangle is $\frac{4^2 \cdot\sqrt{3}}{4} = 4\sqrt{3}$. The difference between the area of the region that lies inside the circle but outside the triangle and the area of the region that lies inside the triangle but outside the circle is the same as the difference between the area of the circle and the area of the triangle (because from both pieces we are subtracting the area of the two shapes' intersection), so the answer is $4\pi-4\sqrt{3}  = \boxed{\textbf{(D)}\;  4(\pi-\sqrt{3})}$.

See Also

2015 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png