2014 USAJMO Problems/Problem 6
Problem
Let be a triangle with incenter , incircle and circumcircle . Let be the midpoints of sides , , and let be the tangency points of with and , respectively. Let be the intersections of line with line and line , respectively, and let be the midpoint of arc of .
(a) Prove that lies on ray .
(b) Prove that line bisects .
Solution
Extra karma will be awarded to the benefactor who so kindly provides a diagram and additional LATEX for this solution. Before then, please peruse your own diagram. [Diagram and additional by pinetree1]
We will first prove part (a) via contradiction: assume that line intersects line at and line and , with and not equal to . Let and . We know that because is a midsegment of triangle ; thus, by alternate interior angles (A.I.A) , because triangle is isosceles. Also by A.I.A, . Furthermore, because is an angle bisector of triangle , it is also an altitude of the triangle; combining this with from the Exterior Angle Theorem gives . Also, because they are vertical angles. This completes part (a).
Now, we attempt part (b). Using a similar argument to part (a), point U lies on line . Because , triangle is isosceles. Similarly, triangle is isosceles, from which we derive that . Hence, triangle is isosceles.
Note that lies on both the circumcircle and the perpendicular bisector of segment . Let be the midpoint of ; our goal is to prove that points , , and are collinear, which equates to proving lies on ray .
Because is also an altitude of triangle , and and are both perpendicular to , . Furthermore, we have because is a parallelogram.