1987 AHSME Problems/Problem 7

Revision as of 13:00, 1 March 2018 by Hapaxoromenon (talk | contribs) (Added a solution with explanation)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $a-1=b+2=c-3=d+4$, which of the four quantities $a,b,c,d$ is the largest?

$\textbf{(A)}\ a \qquad \textbf{(B)}\ b \qquad \textbf{(C)}\ c \qquad \textbf{(D)}\ d \qquad \textbf{(E)}\ \text{no one is always largest}$

Solution

We have $a = a$, $b = a - 3$, $c = a + 2$, and $d = a - 5$, so now as $2 > 0 > -3 > -5$, $c$ is always largest. Hence the answer is $\boxed{\text{C}}$.

See also

1987 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png