1988 AHSME Problems/Problem 4

Revision as of 05:30, 31 August 2015 by Quantummech (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The slope of the line $\frac{x}{3} + \frac{y}{2} = 1$ is

$\textbf{(A)}\ -\frac{3}{2}\qquad \textbf{(B)}\ -\frac{2}{3}\qquad \textbf{(C)}\ \frac{1}{3}\qquad \textbf{(D)}\ \frac{2}{3}\qquad \textbf{(E)}\ \frac{3}{2}$


Solution

To find the slope, all we have to do is put the equation into slope-intercept form. We subtract $\frac{x}{3}$ from both sides and then multiple all terms by $2$. This yields $y=-\frac{2}{3}x+1$, so the slope is $-\frac{2}{3} \implies \boxed{\text{B}}$.

See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png