1958 AHSME Problems/Problem 37

Revision as of 22:23, 13 March 2015 by Mathgeek2006 (talk | contribs) (Problem)

Problem

The first term of an arithmetic series of consecutive integers is $k^2 + 1$. The sum of $2k + 1$ terms of this series may be expressed as:

$\textbf{(A)}\ k^3 + (k + 1)^3\qquad  \textbf{(B)}\ (k - 1)^3 + k^3\qquad  \textbf{(C)}\ (k + 1)^3\qquad \\ \textbf{(D)}\ (k + 1)^2\qquad  \textbf{(E)}\ (2k + 1)(k + 1)^2$

Solution

$\fbox{}$

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 36
Followed by
Problem 38
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png