1958 AHSME Problems/Problem 14
Problem
At a dance party a group of boys and girls exchange dances as follows: one boy dances with girls, a second boy dances with girls, and so on, the last boy dancing with all the girls. If represents the number of boys and the number of girls, then:
$\textbf{(A)}\ b \equal{} g\qquad \textbf{(B)}\ b \equal{} \frac{g}{5}\qquad \textbf{(C)}\ b \equal{} g \minus{} 4\qquad \textbf{(D)}\ b \equal{} g \minus{} 5\qquad \\ \textbf{(E)}\ \text{It is impossible to determine a relation between }{b}\text{ and }{g}\text{ without knowing }{b \plus{} g.}$ (Error compiling LaTeX. Unknown error_msg)
Solution
See Also
1958 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.