2014 AMC 12A Problems
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
Problem 1
What is
$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ \frac{25}{2}\qquad\textbf{(D)}}\ \frac{170}{3}\qquad\textbf{(E)}\ 170$ (Error compiling LaTeX. Unknown error_msg)
Problem 2
At the theater children get in for half price. The price for adult tickets and
child tickets is
. How much would
adult tickets and
child tickets cost?
Problem 3
Walking down Jane Street, Ralph passed four houses in a row, each painted a different color. He passed the orange house before the red house, and he passed the blue house before the yellow house. The blue house was not next to the yellow house. How many orderings of the colored houses are possible?
$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}}\ 5\qquad\textbf{(E)}\ 6$ (Error compiling LaTeX. Unknown error_msg)
Problem 4
Suppose that cows give
gallons of milk in
days. At this rate, how many gallons of milk will
cows give in
days?
$\textbf{(A)}\ \frac{bde}{ac}\qquad\textbf{(B)}\ \frac{ac}{bde}\qquad\textbf{(C)}\ \frac{abde}{c}\qquad\textbf{(D)}}\ \frac{bcde}{a}\qquad\textbf{(E)}\ \frac{abc}{de}$ (Error compiling LaTeX. Unknown error_msg)
Problem 5
On an algebra quiz, of the students scored
points,
scored
points,
scored
points, and the rest scored
points. What is the difference between the mean and median score of the students' scores on this quiz?
$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}}\ 4\qquad\textbf{(E)}\ 5$ (Error compiling LaTeX. Unknown error_msg)
Problem 6
The difference between a two-digit number and the number obtained by reversing its digits is times the sum of the digits of either number. What is the sum of the two digit number and its reverse?
Problem 7
The first three terms of a geometric progression are ,
, and
. What is the fourth term?
Problem 8
A customer who intends to purchase an appliance has three coupons, only one of which may be used:
Coupon 1: off the listed price if the listed price is at least
Coupon 2: dollars off the listed price if the listed price is at least
Coupon 3: off the amount by which the listed price exceeds
For which of the following listed prices will coupon offer a greater price reduction than either coupon
or coupon
?
Problem 9
Five positive consecutive integers starting with have average
. What is the average of
consecutive integers that start with
?
$\textbf{(A)}\ a+3\qquad\textbf{(B)}\ a+4\qquad\textbf{(C)}\ a+5\qquad\textbf{(D)}}\ a+6\qquad\textbf{(E)}\ a+7$ (Error compiling LaTeX. Unknown error_msg)
Problem 10
Three congruent isosceles triangles are constructed with their bases on the sides of an equilateral triangle of side length . The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle. What is the length of one of the two congruent sides of one of the isosceles triangles?
Problem 11
David drives from his home to the airport to catch a flight. He drives miles in the first hour, but realizes that he will be
hour late if he continues at this speed. He increases his speed by
miles per hour for the rest of the way to the airport and arrives
minutes early. How many miles is the airport from his home?
Problem 12
Two circles intersect at points and
. The minor arcs
measure
on one circle and
on the other circle. What is the ratio of the area of the larger circle to the area of the smaller circle?
Problem 13
A fancy bed and breakfast inn has rooms, each with a distinctive color-coded decor. One day
friends arrive to spend the night. There are no other guests that night. The friends can room in any combination they wish, but with no more than
friends per room. In how many ways can the innkeeper assign the guests to the rooms?
Problem 14
Let be three integers such that
is an arithmetic progression and
is a geometric progression. What is the smallest possible value of
?
Problem 15
A five-digit palindrome is a positive integer with respective digits , where
is non-zero. Let
be the sum of all five-digit palindromes. What is the sum of the digits of
.
Problem 16
The product , where the second factor has
digits, is an integer whose digits have a sum of
. What is
?
Problem 17
A rectangular box contains a sphere of radius
and eight smaller spheres of radius
. The smaller spheres are each tangent to three sides of the box, and the larger sphere is tangent to each of the smaller spheres. What is
?
![[asy] import three; import solids; real h=2+2*sqrt(7); currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2)); currentlight=light(1,0,3); draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0)); draw(shift((1,3,1))*unitsphere,black); draw(shift((3,3,1))*unitsphere,black); draw(shift((3,1,1))*unitsphere,black); draw(shift((1,1,1))*unitsphere,black); draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,black); draw(shift((1,3,h-1))*unitsphere,black); draw(shift((3,3,h-1))*unitsphere,black); draw(shift((3,1,h-1))*unitsphere,black); draw(shift((1,1,h-1))*unitsphere,black); draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h)); [/asy]](http://latex.artofproblemsolving.com/0/0/d/00d63c1a447c4a9944425b4068db39caf24dcf22.png)
Problem 18
The domain of the function is an interval of length
, where
and
are relatively prime positive integers. What is
?
Problem 19
There are exactly distinct rational numbers
such that
and
has at least one integer solution for
. What is
?
Problem 20
In ,
,
, and
. Points
and
lie on
and
respectively. What is the minimum possible value of
?
Problem 21
For every real number , let
denote the greatest integer not exceeding
, and let
The set of all numbers
such that
and
is a union of disjoint intervals. What is the sum of the lengths of those intervals?
Problem 22
The number is between
and
. How many pairs of integers
are there such that
and
Problem 23
The fraction where
is the length of the period of the repeating decimal expansion. What is the sum
?
Problem 24
Let , and for
, let
. For how many values of
is
?
Problem 25
The parabola has focus
and goes through the points
and
. For how many points
with integer coefficients is it true that
?