1962 AHSME Problems/Problem 1

Revision as of 21:34, 10 November 2013 by Fadebekun (talk | contribs) (See Also)

Problem

The expression $\frac{1^{4y-1}}{5^{-1}+3^{-1}}$ is equal to:

$\textbf{(A)}\ \frac{4y-1}{8}\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ \frac{15}{2}\qquad\textbf{(D)}\ \frac{15}{8}\qquad\textbf{(E)}\ \frac{1}{8}$

Solution

We simplify the expression to yield:

$\dfrac{1^{4y-1}}{5^{-1}+3^{-1}}=\dfrac{1}{5^{-1}+3^{-1}}=\dfrac{1}{\dfrac{1}{5}+\dfrac{1}{3}}=\dfrac{1}{\dfrac{8}{15}}=\dfrac{15}{8}$.

Thus our answer is $\boxed{\textbf{(D)}\ \frac{15}{8}}$.

See Also

1962 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png