1997 USAMO Problems/Problem 4

Revision as of 17:17, 12 October 2019 by Kevinmathz (talk | contribs) (Solution)

Problem

To clip a convex $n$-gon means to choose a pair of consecutive sides $AB, BC$ and to replace them by three segments $AM, MN,$ and $NC,$ where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $BC$. In other words, one cuts off the triangle $MBN$ to obtain a convex $(n+1)$-gon. A regular hexagon $P_6$ of area $1$ is clipped to obtain a heptagon $P_7$. Then $P_7$ is clipped (in one of the seven possible ways) to obtain an octagon $P_8$, and so on. Prove that no matter how the clippings are done, the area of $P_n$ is greater than $\frac{1}{3}$, for all $n\ge6$.

Solution

[asy] draw((1, 0)--(0.5, 0.866)--(-0.5, 0.866)--(-1, 0)--(-0.5, -0.866)--(0.5, -0.866)--(1, 0)); draw((1, 0)--(-0.5, 0.866)--(-0.5, -0.866)--(1, 0), blue); draw((-1, 0)--(0.5, -0.866)--(0.5, 0.866)--(-1, 0), blue); [/asy]

See Also

1997 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png