2013 USAMO Problems/Problem 1
Problem
In triangle , points
lie on sides
respectively. Let
,
,
denote the circumcircles of triangles
,
,
, respectively. Given the fact that segment
intersects
,
,
again at
respectively, prove that
Solution 1
In this solution, all lengths and angles are directed.
Firstly, it is easy to see by that concur at a point
. Let
meet
again at
and
, respectively. Then by Power of a Point, we have
Thusly
But we claim that
. Indeed,
and
Therefore,
. Analogously we find that
and we are done.
courtesy v_enhance
Solution 2
Diagram Refer to the Diagram link.
By Miquel's Theorem, there exists a point at which intersect. We denote this point by
Now, we angle chase:
In addition, we have
Now, by the Ratio Lemma, we have
(by the Law of Sines in
)
(by the Law of Sines in
)
by the Ratio Lemma.
The proof is complete.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.