2013 USAMO Problems/Problem 3
Revision as of 18:41, 11 May 2013 by Yuler1818181818 (talk | contribs)
Let be a positive integer. There are
marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing
marks. Initially, each mark has the black side up. An operation is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called admissible if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration
, let
denote the smallest number of operations required to obtain
from the initial configuration. Find the maximum value of
, where
varies over all admissible configurations