2011 IMO Problems/Problem 3

Revision as of 23:05, 10 October 2013 by DANCH (talk | contribs)

Let $f: \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies \[f(x + y) \le yf(x) + f(f(x))\] for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \le 0$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.