1996 AHSME Problems

Revision as of 12:08, 19 August 2011 by Azjps (talk | contribs) (<asy>s by dragon96)

Problem 1

The addition below is incorrect. What is the largest digit that can be changed to make the addition correct?

$\begin{tabular}{r}&\ \texttt{6 4 1}\\ \texttt{8 5 2} &+\texttt{9 7 3}\\ \hline \texttt{2 4 5 6}\end{tabular}$ (Error compiling LaTeX. Unknown error_msg)


$\text{(A)}\ 4\qquad\text{(B)}\ 5\qquad\text{(C)}\ 6\qquad\text{(D)}\ 7\qquad\text{(E)}\ 8$


Solution

Problem 2

Each day Walter gets $3$ dollars for doing his chores or $5$ dollars for doing them exceptionally well. After $10$ days of doing his chores daily, Walter has received a total of $36$ dollars. On how many days did Walter do them exceptionally well?

$\text{(A)}\ 3\qquad\text{(B)}\ 4\qquad\text{(C)}\ 5\qquad\text{(D)}\ 6\qquad\text{(E)}\ 7$

Solution

Problem 3

$\frac{(3!)!}{3!}=$

$\text{(A)}\ 1\qquad\text{(B)}\ 2\qquad\text{(C)}\ 6\qquad\text{(D)}\ 40\qquad\text{(E)}\ 120$

Solution

Problem 4

Six numbers from a list of nine integers are $7,8,3,5, 9$ and $5$. The largest possible value of the median of all nine numbers in this list is

$\text{(A)}\ 5\qquad\text{(B)}\6\qquad\text{(C)}\ 7\qquad\text{(D)}\ 8\qquad\text{(E)}\ 9$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 5

Given that $0 < a < b < c < d$, which of the following is the largest?

$\text{(A)}\  \frac{a+b}{c+d} \qquad\text{(B)}\ \frac{a+d}{b+c} \qquad\text{(C)}\  \frac{b+c}{a+d} \qquad\text{(D)}\  \frac{b+d}{a+c} \qquad\text{(E)}\ \frac{c+d}{a+b}$

Solution

Problem 6

If $f(x) = x^{(x+1)}(x+2)^{(x+3)}$, then $f(0)+f(-1)+f(-2)+f(-3) =$

$\text{(A)}\ -\frac{8}{9}\qquad\text{(B)}\ 0\qquad\text{(C)}\ \frac{8}{9}\qquad\text{(D)}\ 1\qquad\text{(E)}\ \frac{10}{9}$

Solution

Problem 7

A father takes his twins and a younger child out to dinner on the twins' birthday. The restaurant charges $4.95$ for the father and $0.45$ for each year of a child's age, where age is defined as the age at the most recent birthday. If the bill is $9.45$, which of the following could be the age of the youngest child?

$\text{(A)}\ 1\qquad\text{(B)}\ 2\qquad\text{(C)}\ 3\qquad\text{(D)}\ 4\qquad\text{(E)}\ 5$

Solution

Problem 8

If $3 = k\cdot 2^r$ and $15 = k\cdot 4^r$, then $r =$

$\text{(A)}\ -\log_{2}5\qquad\text{(B)}\ \log_{5}2\qquad\text{(C)}\ \log_{10}5\qquad\text{(D)}\ \log_{2}5\qquad\text{(E)}\ \frac{5}{2}$

Solution

Problem 9

Triangle $PAB$ and square $ABCD$ are in perpendicular planes. Given that $PA = 3, PB = 4$ and $AB = 5$, what is $PD$? [asy] real r=sqrt(2)/2; draw(origin--(8,0)--(8,-1)--(0,-1)--cycle); draw(origin--(8,0)--(8+r, r)--(r,r)--cycle); filldraw(origin--(-6*r, -6*r)--(8-6*r, -6*r)--(8, 0)--cycle, white, black); filldraw(origin--(8,0)--(8,6)--(0,6)--cycle, white, black); pair A=(6,0), B=(2,0), C=(2,4), D=(6,4), P=B+1*dir(-65); draw(A--P--B--C--D--cycle); dot(A^^B^^C^^D^^P); label("$A$", A, dir((4,2)--A)); label("$B$", B, dir((4,2)--B)); label("$C$", C, dir((4,2)--C)); label("$D$", D, dir((4,2)--D)); label("$P$", P, dir((4,2)--P));[/asy]

$\text{(A)}\ 5\qquad\text{(B)}\ \sqrt{34} \qquad\text{(C)}\ \sqrt{41}\qquad\text{(D)}\ 2\sqrt{13}\qquad\text{(E)}\ 8$

Solution

Problem 10

How many line segments have both their endpoints located at the vertices of a given cube?

$\text{(A)}\ 12\qquad\text{(B)}\ 15\qquad\text{(C)}\ 24\qquad\text{(D)}\ 28\qquad\text{(E)}\ 56$

Solution

Problem 11

Given a circle of raidus $2$, there are many line segments of length $2$ that are tangent to the circle at their midpoints. Find the area of the region consisting of all such line segments.

$\text{(A)}\ \frac{\pi} 4\qquad\text{(B)}\ 4-\pi\qquad\text{(C)}\ \frac{\pi} 2\qquad\text{(D)}\ \pi\qquad\text{(E)}\ 2\pi$

Solution

Problem 12

A function $f$ from the integers to the integers is defined as follows:

\[f(x) =\begin{cases}n+3 &\text{if n is odd}\\ n/2 &\text{if n is even}\end{cases}\]

Suppose $k$ is odd and $f(f(f(k))) = 27$. What is the sum of the digits of $k$?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 15$


Solution

Problem 13

Sunny runs at a steady rate, and Moonbeam runs $m$ times as fast, where $m$ is a number greater than 1. If Moonbeam gives Sunny a head start of $h$ meters, how many meters must Moonbeam run to overtake Sunny?

$\text{(A)}\ hm\qquad\text{(B)}\ \frac{h}{h+m}\qquad\text{(C)}\ \frac{h}{m-1}\qquad\text{(D)}\ \frac{hm}{m-1}\qquad\text{(E)}\ \frac{h+m}{m-1}$

Solution

Problem 14

Let $E(n)$ denote the sum of the even digits of $n$. For example, $E(5681) = 6+8 = 14$. Find $E(1)+E(2)+E(3)+\cdots+E(100)$

$\text{(A)}\ 200\qquad\text{(B)}\ 360\qquad\text{(C)}\ 400\qquad\text{(D)}\ 900\qquad\text{(E)}\ 2250$

Solution

Problem 15

Two opposite sides of a rectangle are each divided into $n$ congruent segments, and the endpoints of one segment are joined to the center to form triangle $A$. The other sides are each divided into $m$ congruent segments, and the endpoints of one of these segments are joined to the center to form triangle $B$. [See figure for $n=5, m=7$.] What is the ratio of the area of triangle to the area of triangle ?

[asy] int i; for(i=0; i<8; i=i+1) { dot((i,0)^^(i,5)); } for(i=1; i<5; i=i+1) { dot((0,i)^^(7,i)); } draw(origin--(7,0)--(7,5)--(0,5)--cycle, linewidth(0.8)); pair P=(3.5, 2.5); draw((0,4)--P--(0,3)^^(2,0)--P--(3,0)); label("$B$", (2.3,0), NE); label("$A$", (0,3.7), SE); [/asy]

$\text{(A)}\ 1\qquad\text{(B)}\ m/n\qquad\text{(C)}\ n/m\qquad\text{(D)}\ 2m/n\qquad\text{(E)}\ 2n/m$

Solution

Problem 16

A fair standard six-sided dice is tossed three times. Given that the sum of the first two tosses equal the third, what is the probability that at least one "2" is tossed?

$\text{(A)}\ \frac{1}{6}\qquad\text{(B)}\ \frac{91}{216}\qquad\text{(C)}\ \frac{1}{2}\qquad\text{(D)}\ \frac{8}{15}\qquad\text{(E)}\ \frac{7}{12}$

Solution

Problem 17

In rectangle $ABCD$, angle $C$ is trisected by $\overline{CF}$ and $\overline{CE}$, where $E$ is on $\overline{AB}$, $F$ is on $\overline{AD}$, $BE=6$ and $AF=2$. Which of the following is closest to the area of the rectangle $ABCD$? [asy] pair A=origin, B=(10,0), C=(10,7), D=(0,7), E=(5,0), F=(0,2); draw(A--B--C--D--cycle, linewidth(0.8)); draw(E--C--F); dot(A^^B^^C^^D^^E^^F); label("$A$", A, dir((5, 3.5)--A)); label("$B$", B, dir((5, 3.5)--B)); label("$C$", C, dir((5, 3.5)--C)); label("$D$", D, dir((5, 3.5)--D)); label("$E$", E, dir((5, 3.5)--E)); label("$F$", F, dir((5, 3.5)--F)); label("$2$", (0,1), dir(0)); label("$6$", (7.5,0), N);[/asy] $\text{(A)}\ 110\qquad\text{(B)}\ 120\qquad\text{(C)}\ 130\qquad\text{(D)}\ 140\qquad\text{(E)}\ 150$

Solution

Problem 18

Solution

Problem 19

[asy] size(120); draw(rotate(30)*polygon(6)); draw(scale(2/sqrt(3))*polygon(6)); pair A=2/sqrt(3)*dir(120), B=2/sqrt(3)*dir(180), C=2/sqrt(3)*dir(240), D=2/sqrt(3)*dir(300), E=2/sqrt(3)*dir(0), F=2/sqrt(3)*dir(60); dot(A^^B^^C^^D^^E^^F); label("$A$", A, dir(origin--A)); label("$B$", B, dir(origin--B)); label("$C$", C, dir(origin--C)); label("$D$", D, dir(origin--D)); label("$E$", E, dir(origin--E)); label("$F$", F, dir(origin--F)); [/asy] Solution

Problem 20

Solution

Problem 21

[asy] size(120); pair B=origin, A=1*dir(70), M=foot(A, B, (3,0)), C=reflect(A, M)*B, E=foot(B, A, C), D=1*dir(20); dot(A^^B^^C^^D^^E); draw(A--D--B--A--C--B); markscalefactor=0.005; draw(rightanglemark(A, E, B)); dot(A^^B^^C^^D^^E); pair point=midpoint(A--M); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); [/asy] Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

Problem 26

Solution

Problem 27

Solution

Problem 28

[asy] size(120); import three; currentprojection=orthographic(1, 4/5, 1/3); draw(box(O, (4,4,3))); triple A=(0,4,3), B=(0,0,0) , C=(4,4,0), D=(0,4,0); draw(A--B--C--cycle, linewidth(0.9)); label("$A$", A, NE); label("$B$", B, NW); label("$C$", C, S); label("$D$", D, E); label("$4$", (4,2,0), SW); label("$4$", (2,4,0), SE); label("$3$", (0, 4, 1.5), E); [/asy] Solution

Problem 29

Solution

Problem 30

Solution