2005 AMC 12B Problems/Problem 23

Revision as of 23:20, 19 February 2012 by Duketip10 (talk | contribs) (Solution)

Problem

Let $S$ be the set of ordered triples $(x,y,z)$ of real numbers for which

\[\log_{10}(x+y) = z \text{ and } \log_{10}(x^{2}+y^{2}) = z+1.\] There are real numbers $a$ and $b$ such that for all ordered triples $(x,y.z)$ in $S$ we have $x^{3}+y^{3}=a \cdot 10^{3z} + b \cdot 10^{2z}.$ What is the value of $a+b?$

$\textbf{(A)}\ \frac {15}{2} \qquad  \textbf{(B)}\ \frac {29}{2} \qquad  \textbf{(C)}\ 15 \qquad  \textbf{(D)}\ \frac {39}{2} \qquad  \textbf{(E)}\ 24$

Solution

Call $x + y = s$ and $x^2 + y^2 = t$. Then, we note that $\log(s)=z$ which implies that $\log(10s) = z+1= \log(t)$. Therefore, $t=10s$. Let us note that $x^3 + y^3 = \frac{3st}{2}-\frac{s^3}{2} = s(15s-\frac{s^2}{2})$. Since $s = 10^z$, we find that $x^3 + y^3 = 15\times10^2 - (1/2)\times10^3$. Thus, $a+b = \frac{29}{2}$. $\boxed{\text{B}}$ is the answer.

See Also

2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions