Factorial

Revision as of 23:22, 29 March 2011 by Williamhu888 (talk | contribs) (Examples)

The factorial is an important function in combinatorics and analysis, used to determine the number of ways to arrange objects.

Definition

The factorial is defined for positive integers as $n!=n \cdot (n-1) \cdots 2 \cdot 1 = \prod_{i=1}^n i$. Alternatively, a recursive definition for the factorial is $n!=n \cdot (n-1)!$.

Examples

  • $0! = 1$
  • $1! = 1$
  • $2! = 2$
  • $3! = 6$
  • $4! = 24$
  • $5! = 120$
  • $6! = 720$
  • $7! = 5040$
  • $8! = 40320$
  • $9! = 362880$
  • $10! = 3628800$
  • $11! = 39916800$
  • $12! = 479001600$
  • $13! = 6227020800$
  • $14! = 87178291200$
  • $15! = 1307674368000$
  • $16! = 20922789888000$
  • $17! = 355687428096000$
  • $18! = 6402373705728000$
  • $19! = 121645100408832000$
  • $20! = 2432902008176640000$
  • $21! = 51090942171709440000$
  • $22! = 1124000727777607680000$
  • $23! = 25852016738884976640000$
  • $24! = 620448401733239439360000$
  • $25! = 15511210043330985984000000$
  • $26! = 403291461126605635584000000$
  • $27! = 10888869450418352160768000000$
  • $28! = 304888344611713860501504000000$
  • $29! = 8841761993739701954543616000000$
  • $30! = 265252859812191058636308480000000$
  • $31! = 8222838654177922817725562880000000$
  • $32! = 263130836933693530167218012160000000$
  • $33! = 8683317618811886495518194401280000000$
  • $34! = 295232799039604140847618609643520000000$
  • $35! = 10333147966386144929666651337523200000000$
  • $36! = 371993326789901217467999448150835200000000$
  • $37! = 13763753091226345046315979581580902400000000$
  • $38! = 523022617466601111760007224100074291200000000$
  • $39! = 20397882081197443358640281739902897356800000000$
  • $40! = 815915283247897734345611269596115894272000000000$
  • $41! = 33452526613163807108170062053440751665152000000000$
  • $42! = 1405006117752879898543142606244511569936384000000000$
  • $43! = 60415263063373835637355132068513997507264512000000000$
  • $44! = 2658271574788448768043625811014615890319638528000000000$
  • $45! = 119622220865480194561963161495657715064383733760000000000$
  • $46! = 5502622159812088949850305428800254892961651752960000000000$
  • $47! = 258623241511168180642964355153611979969197632389120000000000$
  • $48! = 12413915592536072670862289047373375038521486354677760000000000$
  • $49! = 608281864034267560872252163321295376887552831379210240000000000$
  • $50! = 30414093201713378043612608166064768844377641568960512000000000000$
  • $51! = 1551118753287382280224243016469303211063259720016986112000000000000$
  • $52! = 80658175170943878571660636856403766975289505440883277824000000000000$
  • $53! = 4274883284060025564298013753389399649690343788366813724672000000000000$
  • $54! = 230843697339241380472092742683027581083278564571807941132288000000000000$
  • $55! = 12696403353658275925965100847566516959580321051449436762275840000000000000$
  • $56! = 710998587804863451854045647463724949736497978881168458687447040000000000000$
  • $57! = 40526919504877216755680601905432322134980384796226602145184481280000000000000$
  • $58! = 2350561331282878571829474910515074683828862318181142924420699914240000000000000$
  • $59! = 138683118545689835737939019720389406345902876772687432540821294940160000000000000$
  • $60! = 8320987112741390144276341183223364380754172606361245952449277696409600000000000000$ (Note: this number is 82 digits long with 14 terminal zeroes!)
  • 1000! = 402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669

944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476 632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534 524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151 027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975 602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200 015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780 889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786 906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348 344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657 245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446 640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819 372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278 288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994 871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230 560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000

Additional Information

By convention, $0!$ is given the value $1$.

The gamma function is a generalization of the factorial to values other than nonnegative integers.

Prime Factorization

Main article: Prime factorization

Since $n!$ is the product of all positive integers not exceeding $n$, it is clear that it is divisible by all primes $p\le n$, and not divisible by any prime $p>n$. But what is the power of a prime $p\le n$ in the prime factorization of $n!$? We can find it as the sum of powers of $p$ in all the factors $1,2,\dots, n$; but rather than counting the power of $p$ in each factor, we shall count the number of factors divisible by a given power of $p$. Among the numbers $1,2,\dots,n$, exactly $\left\lfloor\frac n{p^k}\right\rfloor$ are divisible by $p^k$ (here $\lfloor\cdot\rfloor$ is the floor function). The ones divisible by $p$ give one power of $p$. The ones divisible by $p^2$ give another power of $p$. Those divisible by $p^3$ give yet another power of $p$. Continuing in this manner gives

$\left\lfloor\frac n{p}\right\rfloor+ \left\lfloor\frac n{p^2}\right\rfloor+ \left\lfloor\frac n{p^3}\right\rfloor+\dots$

for the power of $p$ in the prime factorization of $n!$. The series is formally infinite, but the terms converge to $0$ rapidly, as it is the reciprocal of an exponential function. For example, the power of $7$ in $100!$ is just $\left\lfloor\frac {100}{7}\right\rfloor+ \left\lfloor\frac {100}{49}\right\rfloor=14+2=16$ ($7^3=343$ is already greater than $100$).

Uses

The factorial is used in the definitions of combinations and permutations, as $n!$ is the number of ways to order $n$ distinct objects.

Problems

Introductory

  • Find the units digit of the sum

\[\sum_{i=1}^{100}(i!)^{2}\]

$\mathrm{(A)}\,0\quad\mathrm{(B)}\,1\quad\mathrm{(C)}\,3\quad\mathrm{(D)}\,5\quad\mathrm{(E)}\,7\quad\mathrm{(F)}\,9$ (Source)

Intermediate

  • Let $P$ be the product of the first $100$ positive odd integers. Find the largest integer $k$ such that $P$ is divisible by $3^k .$

(Source)

Olympiad

  • Let $p_n (k)$ be the number of permutations of the set $\{ 1, \ldots , n \} , \; n \ge 1$, which have exactly $k$ fixed points. Prove that
    $\sum_{k=0}^{n} k \cdot p_n (k) = n!$.

(Source)

See Also