2001 USAMO Problems/Problem 2
Problem
Let be a triangle and let be its incircle. Denote by and the points where is tangent to sides and , respectively. Denote by and the points on sides and , respectively, such that and , and denote by the point of intersection of segments and . Circle intersects segment at two points, the closer of which to the vertex is denoted by . Prove that .
Solution
It is well known that the excircle opposite is tangent to at the point . (Proof: let the points of tangency of the excircle with the lines be respectively. Then . It follows that , and , so .)
Now consider the homothety that carries the incircle of to its excircle. The homothety also carries to (since are collinear), and carries the tangency points to . It follows that .
By Menelaus' Theorem it follows that . It easily follows that .
See also
2001 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |