2007 iTest Problems/Problem 2

Revision as of 20:05, 4 February 2023 by Ryanjwang (talk | contribs) (Alternate Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Find $a + b$ if $a$ and $b$ satisfy $3a + 7b = 1977$ and $5a + b = 2007$.

$\mathrm{(A)}\, 488\quad\mathrm{(B)}\, 498$

Solution

$3a + 7b = 1977$ and $5a + b = 2007$.

Thus, $b=2007-5a$, and substituting, $3a+14049-35a=1977\Rightarrow$$-32a=-12072\Rightarrow a=377.25$. Thus, $b=2007-1886.25\Rightarrow b=120.75$. Thus, $a+b=377.25+120.75=498$$\Rightarrow \boxed{\mathrm{B}}$

Alternate Solution

We have $3a+7b=1977$ and $5a+b=2007$. Notice the symmetry we have if we add the two equations together: $8a+8b=3984$. Dividing by 8, we have $a+b=498$. $\boxed{\mathrm{B}}$

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 1
Followed by:
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4