2008 AMC 10A Problems/Problem 23

Revision as of 13:06, 11 August 2009 by Mathemagician1729 (talk | contribs) (Solution)

Problem

Two subsets of the set $S=\lbrace a,b,c,d,e\rbrace$ are to be chosen so that their union is $S$ and their intersection contains exactly two elements. In how many ways can this be done, assuming that the order in which the subsets are chosen does not matter?

$\mathrm{(A)}\ 20\qquad\mathrm{(B)}\ 40\qquad\mathrm{(C)}\ 60\qquad\mathrm{(D)}\ 160\qquad\mathrm{(E)}\ 320$

Solution

First choose the two letters to be repeated in each set. $\dbinom{5}{2}=10$. Now we have three remaining elements that we wish to place into two separate subsets. There are $2^3 = 8$ ways to do so (Do you see why?). Unfortunately, we have over-counted (Take for example $S_{1} = \{a,b,c,d \}$ and $S_{1} = \{a,b,e \}$). Notice how $S_{1}$ and $S_{2}$ are interchangeable. A simple division by two will fix this problem. Thus we have:

$\dfrac{10 \times 8}{2} = 40 \implies \boxed{\text{D}}$

This problem was discussed in an AoPS Math Jam a while back. The transcript should be located here: http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=218

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions