1992 AIME Problems/Problem 7

Revision as of 21:43, 4 September 2011 by Danielguo94 (talk | contribs) (Solution)

Problem

Faces $ABC^{}_{}$ and $BCD^{}_{}$ of tetrahedron $ABCD^{}_{}$ meet at an angle of $30^\circ$. The area of face $ABC^{}_{}$ is $120^{}_{}$, the area of face $BCD^{}_{}$ is $80^{}_{}$, and $BC=10^{}_{}$. Find the volume of the tetrahedron.

Solution

Since the area $BCD=80=\frac{1}{2}\cdot10\cdot16$, the perpendicular from D to BC has length 16.

The perpendicular from D to ABC is $16 \cdot \sin 30^\circ=8$. Therefore, the volume is $\frac{8\cdot120}{3}=\boxed{320}$.

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions