2002 AIME II Problems/Problem 11
Revision as of 18:06, 23 June 2008 by Xantos C. Guin (talk | contribs)
Problem
Two distinct, real, infinite geometric series each have a sum of and have the same second term. The third term of one of the series is , and the second term of both series can be written in the form , where , , and are positive integers and is not divisible by the square of any prime. Find .
Solution
Let the second term of each series be . Then, the common ratio is , and the first term is .
So, the sum is . Thus, .
The only solution in the appropriate form is . Therefore, .
See also
2002 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |