2025 AIME I Problems/Problem 2
Problem
In points
and
lie on
so that
, while points
and
lie on
so that
. Suppose
,
,
,
,
, and
. Let
be the reflection of
through
, and let
be the reflection of
through
. The area of quadrilateral
is
. Find the area of heptagon
, as shown in the figure below.
Solution 1
Note that the triangles outside have the same height as the unshaded triangles in
. Since they have the same bases, the area of the heptagon is the same as the area of triangle
. Therefore, we need to calculate the area of
. Denote the length of
as
and the altitude of
to
as
. Since
,
and the altitude of
is
. The area
. The area of
is equal to
.
~ alwaysgonnagiveyouup