2008 AMC 12A Problems/Problem 13
Revision as of 00:22, 26 April 2008 by I like pie (talk | contribs) (Duplicate, standardized answer choices, added AMC 10 box, style)
- The following problem is from both the 2008 AMC 12A #13 and 2008 AMC 10A #16, so both problems redirect to this page.
Problem
Points and lie on a circle centered at , and . A second circle is internally tangent to the first and tangent to both and . What is the ratio of the area of the smaller circle to that of the larger circle?
Solution
Let be the center of the small circle with radius , and let be the point where the small circle is tangent to , and finally, let be the point where the small circle is tangent to the big circle with radius . Then is a right triangle, and a 30-60-90 triangle at that. So, . Since , we have , or , or . Then the ratio of areas will be squared, or .
See also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2008 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |