2008 AMC 12A Problems/Problem 24
Revision as of 11:05, 24 February 2008 by Chickendude (talk | contribs) (Added Solution - Need help on asymptote)
Problem
Triangle has and . Point is the midpoint of . What is the largest possible value of ?
Solution
unitsize(12mm); pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); pair E=(1,0), F=(2,0); draw(C--B--A--C); draw(A--D); draw(D--E); draw(B--F); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); label("C",C,SW); label("B",B,N); label("A",A,SE); label("D",D,NW); label("E",E,S); label("F",F,S); label("<math>60^\circ</math>",C,NE); label("2",1*dir(60),NW); label("2",3*dir(60),NW); label("<math>\theta</math>",(7,.4)); label("1",(.5,0),S); label("1",(1.5,0),S); label("x-2",(5,0),S); (Error making remote request. Unknown error_msg)
Where
Since and , we have
Multiplying numerator and denominator by
If you know calculus, you can use that right here to max , but if you don't:
By AM-GM
Which means that the minimum is
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |