2024 AMC 12A Problems/Problem 15

Revision as of 21:09, 8 November 2024 by Tsun26 (talk | contribs) (Solution 4 (Reduction of power))

Problem

The roots of $x^3 + 2x^2 - x + 3$ are $p, q,$ and $r.$ What is the value of \[(p^2 + 4)(q^2 + 4)(r^2 + 4)?\]$\textbf{(A) } 64 \qquad \textbf{(B) } 75 \qquad \textbf{(C) } 100 \qquad \textbf{(D) } 125 \qquad \textbf{(E) } 144$

Solution 1

You can factor $(p^2 + 4)(q^2 + 4)(r^2 + 4)$ as $(p+2i)(p-2i)(q+2i)(q-2i)(r+2i)(r-2i)$.

For any polynomial $f(x)$, you can create a new polynomial $f(x+2)$, which will have roots that instead have the value subtracted.

Substituting $x-2$ and $x+2$ into $x$ for the first polynomial, gives you $10i-5$ and $-10i-5$ as $c$ for both equations. Multiplying $10i-5$ and $-10i-5$ together gives you $\boxed{\textbf{(D) }125}$.

-ev2028

~Latex by eevee9406

Solution 2

Let $f(x)=x^3 + 2x^2 - x + 3$. Then $(p^2 + 4)(q^2 + 4)(r^2 + 4)=(p+2i)(p-2i)(q+2i)(q-2i)(r+2i)(r-2i)=f(2i)f(-2i)$.


We find that $f(2i)=-8i-8-2i+3=-10i-5$ and $f(-2i)=8i-8+2i+3=10i-5$, so $f(2i)f(-2i)=(-5-10i)(-5+10i)=(-5)^2-(10i)^2=25+100=\boxed{\textbf{(D) }125}$.

~eevee9406

Solution 3

First, denote that \[p+q+r=-2, pq+pr+qr=-1, pqr=-3\] Then we expand the expression \[(p^2+4)(q^2+4)(r^2+4)\] \[=(pqr)^2+4((pq)^2+(pr)^2+(qr)^2)+4^2(p^2+q^2+r^2)+4^3\] \[=(-3)^2+4((pq+pr+qr)^2-2pqr(p+q+r))+4^2((p+q+r)^2-2(pq+pr+qr))+4^3\] \[=(-3)^2+4((-1)^2-2(-3)(-2))+4^2((-2)^2-2(-1))+4^3\] \[=\fbox{(D) 125}\] ~lptoggled

Solution 4 (Reduction of power)

The motivation for this solution is the observation that $(p+c)(q+c)(r+c)$ is easy to compute for any constant c, since $(p+c)(q+c)(r+c)=-f(-c)$, where $f$ is the polynomial given in the problem. The idea is to transform the expression involving $p^2, q^2, r^2$ into one involving $p, q, r$.

Since $p^3+2px^2-p+3=0$, we get $p^2=\frac{p-3}{p+2}$. Similarly $q^2=\frac{q-3}{q+2}$ and $r^2=\frac{r-3}{r+2}$.

Hence, \[(p^2 + 4)(q^2 + 4)(r^2 + 4)\] \[=\left(\frac{p-3}{p+2}+4\right)\left(\frac{q-3}{q+2}+4\right)\left(\frac{r-3}{r+2}+4\right)\] \[=\left(\frac{5p+5}{p+1}\right)\left(\frac{5q+5}{q+1}\right)\left(\frac{5r+5}{r+1}\right)\] \[=125\]

Interestingly, we didn't even need to do any calculations as the terms just cancelled. Our answer is $\boxed{\textbf{(D) }125}$.

~tsun26

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png