1959 AHSME Problems/Problem 40

Revision as of 16:03, 21 July 2024 by Thepowerful456 (talk | contribs) (replaced with correct problem)

Problem

In $\triangle ABC$, $BD$ is a median. $CF$ intersects $BD$ at $E$ so that $\overline{BE}=\overline{ED}$. Point $F$ is on $AB$. Then, if $\overline{BF}=5$, $\overline{BA}$ equals: $\textbf{(A)}\ 10 \qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ \text{none of these}$

Solution

Make a line DG which is parallel to FC. We know that GF = BF = 5, since BFE is similar to BGD.

Since ADG is similar to ACB, we know that AG is 10.

Thus, AF = 10 + 5 = 15, which is answer $\fbox{\textbf{(C)}}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 39
Followed by
Problem 41
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png