2002 AMC 10P Problems/Problem 22
Contents
Problem
In how many zeroes does the number end?
Solution 1
We can solve this problem with an application of Legendre's Formula.
We know that there will be an abundance of factors of compared to factors of so finding the amount of factors of is equivalent to finding how many factors of there are, which is equivalent to how many zeroes there are at the end of the number. Additionally, squaring a number will multiply the exponent of each factor by Therefore, we plug in and then plug in and and multiply by in:
As such,
\begin{align*} e_5(2002!)=&\left\lfloor\frac{2002}{5}\right\rfloor+\left\lfloor\frac{2002}{5^2}\right\rfloor+\left\lfloor\frac {2002}{5^3}\right\rfloor+\left\lfloor\frac{2002}{5^4}\right\rfloor\\ =&400+80+16+3 \\ =&499 \end{align*}
or alternatively,
Similarly,
\begin{align*} e_5(2002!)=&\left\lfloor\frac{1001}{5}\right\rfloor+\left\lfloor\frac{1001}{5^2}\right\rfloor+\left\lfloor\frac {1001}{5^3}\right\rfloor+\left\lfloor\frac{1001}{5^4}\right\rfloor\\ =&200+40+8+1 \\ =&299 \end{align*}
or alternatively,
In any case, our answer is
Solution 2
In case we have forgotten Legendre's formula or haven't learned it, this solution is equally viable.
Cancel from both sides of the fraction. We get
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.