2002 AMC 10P Problems
2002 AMC 10P (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
The ratio equals
Problem 2
The sum of eleven consecutive integers is What is the smallest of these integers?
Problem 3
Mary typed a six-digit number, but the two s she typed didn't show. What appeared was
How many different six-digit numbers could she have typed?
Problem 4
Which of the following numbers is a perfect square?
Problem 5
Let be a sequence such that
and
for all
Find
Problem 6
The perimeter of a rectangle and its diagonal has length
What is the area of this rectangle?
Problem 7
The dimensions of a rectangular box in inches are all positive integers and the volume of the box is in
. Find the minimum possible sum of the three dimensions.
Problem 8
How many ordered triples of positive integers satisfy
Problem 9
The function is given by the table
If and
for
, find
Problem 10
Let and
be distinct real numbers for which
Find
Problem 11
Let Find the sum of all real numbers
for which
is a factor of
Problem 12
For and
consider
Which of these equal
Problem 13
Participation in the local soccer league this year is higher than last year. The number of males increased by
and the number of females increased by
. What fraction of the soccer league is now female?
Problem 14
The vertex of a square
is at the center of square
The length of a side of
is
and the length of a side of
is
Side
intersects
at
and
intersects
at
If angle
the area of quadrilateral
is
Problem 15
What is the smallest integer for which any subset of
of size
must contain two numbers that differ by 8?
Problem 16
Two walls and the ceiling of a room meet at right angles at point A fly is in the air one meter from one wall, eight meters from the other wall, and nine meters from point
. How many meters is the fly from the ceiling?
Problem 17
There are red marbles and
black marbles in a box. Let
be the probability that two marbles drawn at random from the box are the same color, and let
be the probability that they are different colors. Find
Problem 18
For how many positive integers is
a prime number?
Problem 19
If are real numbers such that
,
and
, find
Problem 20
How many three-digit numbers have at least one and at least one
?
Problem 21
Let and
be real numbers greater than
for which there exists a positive real number
different from
, such that
Find the largest possible value of
Problem 22
Under the new AMC scoring method,
poitns are given for each correct answer,
points are given for each unanswered question, and no points are given for an incorrect answer. Some of the possible scores between
and
can be obtained in only one way, for example, the only way to obtain a score of
is to have
correct answers and one unanswered question. Some scores can be obtained in exactly two ways, for example, a score of
can be obtained with
correct answers,
unanswered question, and
incorrect, and also with
correct answers and
unanswered questions. There are (three) scores that can be obtained in exactly three ways. What is their sum?
Problem 23
The equation has a zero of the form
, where
and
are positive real numbers. Find
Problem 24
Let be a regular tetrahedron and Let
be a point inside the face
Denote by
the sum of the distances from
to the faces
and by
the sum of the distances from
to the edges
Then
equals
Problem 25
Let and
be real numbers such that
and
Find
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by 2001 AMC 10 Problems |
Followed by 2002 AMC 10A Problems | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.