2017 AMC 10B Problems/Problem 16
Problem
How many of the base-ten numerals for the positive integers less than or equal to contain the digit ?
Solution 1
We can use complementary counting. There are positive integers in total to consider, and there are one-digit integers, two digit integers without a zero, three digit integers without a zero, and four-digit integers starting with a 1 without a zero. Therefore, the answer is .
Solution 2 (Casework)
We can use casework to solve this problem. First, we notice there are no one-digit numbers that contain a zero. There are two-digit integers and three-digit integers containing at least one zero. Next, we consider the four-digit integers beginning with one. There are of these four-digit integers with one zero, with two zeros, and with three zeros . Finally, we consider the numbers to which all contain at least one zero. Adding all of these together we get . ~vsinghminhas
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.