2023 AMC 12A Problems/Problem 10

Revision as of 19:10, 9 November 2023 by Plasta (talk | contribs)

Problem

Positive real numbers $x$ and $y$ satisfy $y^3=x^2$ and $(y-x)^2=4y^2$. What is $x+y$? $\textbf{(A) }12\qquad\textbf{(B) }18\qquad\textbf{(C) }24\qquad\textbf{(D) }36\qquad\textbf{(E) }42$

Solution

Because $y^3=x^2$, set $x=a^3$, $y=a^2$ ($a\neq 0$). Put them in $(y-x)^2=4y^2$ we get $(a^2(a-1))^2=4a^4$ which implies $a^2-2a+1=4$. Solve the equation to get $a=3$ or $-1$. Since $x$ and $y$ are positive, $a=3$ and $x+y=3^3+3^2=\boxed{\textbf{(D)} 36}$.

~Plasta