2023 AIME I Problems/Problem 4
Revision as of 14:46, 8 February 2023 by MRENTHUSIASM (talk | contribs)
Problem 4
The sum of all positive integers such that is a perfect square can be written as where and are positive integers. Find
Solution 1
We first rewrite as a prime factorization, which is
For the fraction to be a square, it needs each prime to be an even power. This means must contain . Also, can contain any even power of up to , any odd power of up to , and any even power of up to . The sum of is Therefore, the answer is .
~chem1kall
Solution 2
The prime factorization of is To get a perfect square, we must have , where , , .
Hence, the sum of all feasible is
Therefore, the answer is
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)