2022 AMC 12A Problems/Problem 23
Problem
Let and
be the unique relatively prime positive integers such that
Let
denote the least common multiple of the numbers
. For how many integers with
is
?
Solution
We are given that Since
we need
For all primes such that
let
be the largest power of
that is a factor of
It is clear that so we test whether
Note that
We construct the following table for
Note that:
- If the Sum column has only one term, then it is never congruent to
modulo
- If
and
are positive integers such that
then
is a multiple of
Therefore, for a specific case, if the sum is congruent to
modulo
for the smallest element in the interval of
then it is also congruent to
modulo
for all other elements in the interval of
Together, there are such integers
namely
~MRENTHUSIASM
Video Solution
We will use the following lemma to solve this problem.
Denote by the prime factorization of
.
For any
, denote
, where
and
are relatively prime.
Then
if and only if for any
,
is not a multiple of
.
Now, we use the result above to solve this problem.
Following from this lemma, the list of with
and
is
Therefore, the answer is .
Note: Detailed analysis of this problem (particularly the motivation and the proof of the lemma above) can be found in my video solution below.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~MathProblemSolvingSkills.com
See Also
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.