2022 AMC 10B Problems/Problem 13
Solution
Let the two primes be and . We would have and . Using difference of cubes, we would have . Since we know is equal to , would become . Simplifying more, we would get .
Now let's introduce another variable. Instead of using and , we can express the primes as and where is and b is . Plugging and in, we would have $(x+2)^{2}+
Solution 1
Let the two primes be and such that and
By the difference of cubes formula,
Plugging in and ,
Through the givens, we can see that .
Thus,
Checking prime pairs near , we find that
The least prime greater than these two primes is
~BrandonZhang202415
See Also
2022 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.