1974 AHSME Problems/Problem 4

Revision as of 00:17, 9 June 2024 by Cxsmi (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

What is the remainder when $x^{51}+51$ is divided by $x+1$?

$\mathrm{(A)\ } 0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \  } 49 \qquad \mathrm{(D) \  } 50 \qquad \mathrm{(E) \  }51$

Solution 1

From the Remainder Theorem, the remainder when $x^{51}+51$ is divided by $x+1$ is $(-1)^{51}+51=-1+51=50, \boxed{\text{D}}$.

Solution 2

Notice that $x^{51}+51$ is equal to $(x^{51}+1)+50$. Since $x^51+1=(x+1)(x^{50}-x^{49}+ \ldots +x^2 - x + 1)$, this part of the polynomial is divisible by $x+1$. Thus, the remainder is $\boxed{\textbf{(D)}~50}$.

~ cxsmi

Video Solution by OmegaLearn

https://youtu.be/Dp-pw6NNKRo?t=256

~ pi_is_3.14

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png