2014 AMC 10A Problems/Problem 13

Revision as of 01:07, 8 October 2022 by Peelybonehead (talk | contribs) (Solution 6)

Problem

Equilateral $\triangle ABC$ has side length $1$, and squares $ABDE$, $BCHI$, $CAFG$ lie outside the triangle. What is the area of hexagon $DEFGHI$?

[asy] import graph; size(6cm); pen dps = linewidth(0.7) + fontsize(8); defaultpen(dps); pair B = (0,0); pair C = (1,0); pair A = rotate(60,B)*C;  pair E = rotate(270,A)*B; pair D = rotate(270,E)*A;  pair F = rotate(90,A)*C; pair G = rotate(90,F)*A;  pair I = rotate(270,B)*C; pair H = rotate(270,I)*B;  draw(A--B--C--cycle); draw(A--E--D--B); draw(A--F--G--C); draw(B--I--H--C);  draw(E--F); draw(D--I); draw(I--H); draw(H--G);  label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,W); label("$E$",E,W); label("$F$",F,E); label("$G$",G,E); label("$H$",H,SE); label("$I$",I,SW); [/asy]

$\textbf{(A)}\ \dfrac{12+3\sqrt3}4\qquad\textbf{(B)}\ \dfrac92\qquad\textbf{(C)}\ 3+\sqrt3\qquad\textbf{(D)}\ \dfrac{6+3\sqrt3}2\qquad\textbf{(E)}\ 6$

Solution 1

The area of the equilateral triangle is $\dfrac{\sqrt{3}}{4}$. The area of the three squares is $3\times 1=3$.

Since $\angle C=360$, $\angle GCH=360-90-90-60=120$.

Dropping an altitude from $C$ to $GH$ allows to create a $30-60-90$ triangle since $\triangle GCH$ is isosceles. This means that the height of $\triangle GCH$ is $\dfrac{1}{2}$ and half the length of $GH$ is $\dfrac{\sqrt{3}}{2}$. Therefore, the area of each isosceles triangle is $\dfrac{1}{2}\times\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{4}$. Multiplying by $3$ yields $\dfrac{3\sqrt{3}}{4}$ for all three isosceles triangles.

Therefore, the total area is $3+\dfrac{\sqrt{3}}{4}+\dfrac{3\sqrt{3}}{4}=3+\dfrac{4\sqrt{3}}{4}=3+\sqrt{3}\implies\boxed{\textbf{(C)}\ 3+\sqrt3}$.

Solution 2

As seen in the previous solution, segment $GH$ is $\sqrt{3}$. Think of the picture as one large equilateral triangle, $\triangle{JKL}$ with the sides of $2\sqrt{3}+1$, by extending $EF$, $GH$, and $DI$ to points $J$, $K$, and $L$, respectively. This makes the area of $\triangle{JKL}$ $\dfrac{\sqrt{3}}{4}(2\sqrt{3}+1)^2=\dfrac{12+13\sqrt{3}}{4}$.

[asy] import graph; size(10cm); pen dps = linewidth(0.7) + fontsize(8); defaultpen(dps); pair B = (0,0); pair C = (1,0); pair A = rotate(60,B)*C;  pair E = rotate(270,A)*B; pair D = rotate(270,E)*A;  pair F = rotate(90,A)*C; pair G = rotate(90,F)*A;  pair I = rotate(270,B)*C; pair H = rotate(270,I)*B;  pair J = rotate(60,I)*D; pair K = rotate(60,E)*F; pair L = rotate(60,G)*H;  draw(A--B--C--cycle); draw(A--E--D--B); draw(A--F--G--C); draw(B--I--H--C);  draw(E--F); draw(D--I); draw(I--H); draw(H--G);  draw(I--J--D); draw(E--K--F); draw(G--L--H);  label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,W); label("$E$",E,W); label("$F$",F,E); label("$G$",G,E); label("$H$",H,SE); label("$I$",I,SW); label("$J$",J,SW); label("$K$",K,N); label("$L$",L,SE); [/asy]

Triangles $\triangle{DIJ}$, $\triangle{EFK}$, and $\triangle{GHL}$ have sides of $\sqrt{3}$, so their total area is $3(\dfrac{\sqrt{3}}{4}(\sqrt{3})^2)=\dfrac{9\sqrt{3}}{4}$.

Now, you subtract their total area from the area of $\triangle{JKL}$:

$\dfrac{12+13\sqrt{3}}{4}-\dfrac{9\sqrt{3}}{4}=\dfrac{12+13\sqrt{3}-9\sqrt{3}}{4}=\dfrac{12+4\sqrt{3}}{4}=3+\sqrt{3}\implies\boxed{\textbf{(C)}\ 3+\sqrt3}$

Solution 3

We will use, $\frac{1}{2}ab\sin x$ to find the area of the following triangles. Since $\angle A=360$, $\angle EAF=360-90-90-60=120$.

The Area of $\triangle AEF$ is $\frac{1}{2} \cdot 1 \cdot 1 \cdot \sin(120)$. Noting, $\sin (2x) = 2\sin (x)\cos (x)$,

Area of $\triangle AEF = \frac{1}{2} \cdot 1 \cdot 1 \cdot 2 \cdot \sin(60) \cdot \cos(60) = \dfrac{\sqrt{3}}{4}$,

Area of $\triangle ABC = \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin(60) = \dfrac{\sqrt{3}}{4}$,

Area of square ABDE = 1,

Therefore the composite area of the entire figure is, \[3 \cdot [\triangle AEF] + [\triangle ABC] + 3 \cdot [ABDE] = 3 \dfrac{\sqrt{3}}{4} + \dfrac{\sqrt{3}}{4} + 3 \cdot 1 = 4 \dfrac{\sqrt{3}}{4} + 3 = \sqrt{3} + 3 \implies\boxed{\textbf{(C)}\ 3+\sqrt3}\]


Solution 4

We know that the area is equal to 3*EAF+3*ACGF+ABC. We also know that ACGF and the rest of the squares' area is equal to 1. Therefore the answer is 3*EAF+ABC+3. The only one with "+3" or "3+" is C, our answer. Very unreliable. -Reality Writes

Solution 5

$\angle{AEF} = 180- \angle{BAC} = 120$

The area of the obtuse triangle is $\frac{1}{2}\sin{120} = \frac{\sqrt{3}}{4}$

The total area is $3\left(1 + \frac{\sqrt{3}}{4}\right) + \frac{\sqrt{3}}{4} = \sqrt{3} + 3$

~mathboy282

Solution 6

The total area is the sum of the three squares, the three (congruent) obtuse triangles, and the equilateral triangle. The area of the equilateral triangle is $\frac{\sqrt{3}}{4}$ and the area of each square is $1$. The area of a triangle in general is $\frac{1}{2}ab\sin(c)$ where $a$ and $b$ are two sides and $c$ is the included angle. $\angle EAF$ measures $120^{\circ}$ because $\angle EAB$ and $\angle FAC$ are right, and $m\angle CAB=60^{\circ}$. So the area of the obtuse triangle is $\frac{1}{2}\cdot1\cdot1\cdot\sin\left(120^{\circ}\right)=\frac{\sqrt{3}}{4}$. The total area is $3\left(\frac{\sqrt{3}}{4}\right)+3\left(1\right)+\frac{\sqrt{3}}{4}=\sqrt{3}+3 \Longrightarrow \boxed{\textbf{(C )}\sqrt{3}+3}$.

~JH. L


Solution 7

Since $\angle C=360$, $\angle GCH=360-90-90-60=120.$ Applying the Law of Cosines on $\angle GCH$ gives us $GH = 1.$ Since $\triangle GCH$ is isosceles, the perpendicular bisector of $\angle C$ also intersects segment $\overline{GH}$ in its median, which we can call point $M.$ Hence, we can apply the Pythagorean theorem on $\triangle CMG$ or $\triangle CMH$ to get $CM = \frac{\sqrt{3}}{4}.$ We can use this to get the area of the triangle and multiply that by three since the triangles are congruent. The result follows.

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png