2021 Fall AMC 12A Problems/Problem 15

Revision as of 15:49, 24 May 2023 by Sal0.v (talk | contribs) (Problem 15)

For a certain complex number $A,$ the roots $z_1,$ $z_2,$ $z_3$ of \[z^3 + Az^2 + (25 + 30i) z - 125i = 0\]satisfy $|z_1| = |z_2| = |z_3|.$ Find $A.$

Solution

By Vieta's formulas, $z_1z_2+z_1z_3+\dots+z_3z_4=3$, and $B=(4i)^2\left(\overline{z}_1\,\overline{z}_2+\overline{z}_1\,\overline{z}_3+\dots+\overline{z}_3\,\overline{z}_4\right).$

Since $\overline{a}\cdot\overline{b}=\overline{ab},$ \[B=(4i)^2\left(\overline{z_1z_2}+\overline{z_1z_3}+\overline{z_1z_4}+\overline{z_2z_3}+\overline{z_2z_4}+\overline{z_3z_4}\right).\] Since $\overline{a}+\overline{b}=\overline{a+b},$ \[B=(4i)^2\left(\overline{z_1z_2+z_1z_3+\dots+z_3z_4}\right)=-16(\overline{3})=-48\]

Also, $z_1z_2z_3z_4=1,$ and \[D=(4i)^4\left(\overline{z}_1\,\overline{z}_2\,\overline{z}_3\,\overline{z}_4\right)=256\left(\overline{z_1z_2z_3z_4}\right)=256(\overline{1})=256.\]

Our answer is $B+D=256-48=\boxed{(\textbf{D}) \: 208}.$

~kingofpineapplz

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png