2022 AIME I Problems/Problem 8

Revision as of 15:34, 18 February 2022 by Kingravi (talk | contribs) (Solution 1)

Problem

Equilateral triangle $\triangle ABC$ is inscribed in circle $\omega$ with radius $18.$ Circle $\omega_A$ is tangent to sides $\overline{AB}$ and $\overline{AC}$ and is internally tangent to $\omega$. Circles $\omega_B$ and $\omega_C$ are defined analogously. Circles $\omega_A$, $\omega_B$, and $\omega_C$ meet in six points$-$two points for each pair of circles. The three intersection points closest to the vertices of $\triangle ABC$ are the vertices of a large equilateral triangle in the interior of $\triangle ABC$, and the other three intersection points are the vertices of a smaller equilateral triangle in the interior of $\triangle ABC$. The side length of the smaller equilateral triangle can be written as $\sqrt{a}-\sqrt{b}$, where $a$ and $b$ are positive integers. Find $a+b$.

Diagram

[asy] unitsize(0.3cm); draw(circle((0,0),18)); pair A = (9 * sqrt(3), -9); pair B = (-9 * sqrt(3), -9); pair C = (0,18); draw(A--B--C--cycle); draw(circle((0,-6),12), gray); draw(circle((3*sqrt(3),3),12), gray); draw(circle((-3*sqrt(3),3),12), gray);  pair X = (0, 3-sqrt(117)); pair Y = ( (sqrt(351)-sqrt(27))/2, (sqrt(117)-3)/2 ); pair Z = ( (sqrt(27) - sqrt(351))/2, (sqrt(117)-3)/2 ); dot(X); dot(Y); dot(Z);  draw(X--Y--Z--cycle, dashed); [/asy]

Solution 1

We can extend $AB$ and $AC$ to $B'$ and $C'$ such that circle $\omega_A$ is the incircle of $\triangle AB'C'$.

unitsize(0.3cm);
draw(circle((0,0),18));
pair A = (9 * sqrt(3), -9);
pair B = (-9 * sqrt(3), -9);
pair B2 = (-12 * sqrt(3), -18);
pair C2 = (12 * sqrt(3), -18);

pair C = (0,18);
draw(A--B--C--cycle);
draw(circle((0,-6),12), gray);
draw(circle((3*sqrt(3),3),12), gray);
draw(circle((-3*sqrt(3),3),12), gray);

draw(B--B2,dashed);
draw(C--C2,dashed);
draw(B2--C2,dashed);

dot(B2);
dot(C2);

pair X = (0, 3-sqrt(117));
pair Y = ( (sqrt(351)-sqrt(27))/2, (sqrt(117)-3)/2 );
pair Z = ( (sqrt(27) - sqrt(351))/2, (sqrt(117)-3)/2 );
dot(X);
dot(Y);
dot(Z);

label("$A$",A,N);
label("$B$",B,W);
label("$C$",C,E);
label("$B'$",B2,W);
label("$C'$",C2,E);
label("$X$,X,S);
label("$Y$",Y,E);
label("$Z$",Z,W);


draw(X--Y--Z--cycle, dashed);
 (Error making remote request. Unknown error_msg)

Solution 2

Let bottom left point as the origin, the radius of each circle is $36/3=12$, note that three centers for circles are $(9\sqrt{3},3),(12\sqrt{3},12),(6\sqrt{3},12)$

It is not hard to find that one intersection point lies on $\frac{\sqrt{3}x}{3}$ since the intersection must lie on the angle bisector of the bigger triangle, plug it into equation $(x-9\sqrt{3})^2+(\frac{\sqrt{3}x}{3}-3)^2=12^2$, getting that $x=\frac{15\sqrt{3}+3\sqrt{39}}{2}$, the length is $2*(\frac{15\sqrt{3}+3\sqrt{39}-18\sqrt{3}}{2}=3\sqrt{39}-3\sqrt{3}$, leads to the answer $378$

~bluesoul

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png