2021 Fall AMC 10A Problems/Problem 5

Revision as of 18:28, 22 November 2021 by Leo.euler (talk | contribs)

The six-digit number $\underline{2}\,\underline{0}\,\underline{2}\,\underline{1}\,\underline{0}\,\underline{A}$ is prime for only one digit $A.$ What is $A?$

$(\textbf{A})\: 1\qquad(\textbf{B}) \: 3\qquad(\textbf{C}) \: 5 \qquad(\textbf{D}) \: 7\qquad(\textbf{E}) \: 9$

Solution 1

By divisibility rules, when $A=1,$ the number $202101$ is divisible by $3.$ When $A=3,$ the number $202103$ is divisible by $11.$ When $A=5,$ the number $202105$ is divisible by $5.$ When $A=7,$ the number $202107$ is divisible by $3.$ Thus, by the process of elimination we have that the answer is $\boxed{\textbf{(E)}.}$

~NH14