Vieta's formulas
In algebra, Vieta's formulas are a set of results that relate the coefficients of a polynomial to its roots. In particular, it states that the elementary symmetric polynomials of its roots can be easily expressed as a ratio between two of the polynomial's coefficients.
It is among the most ubiquitous results to circumvent finding a polynomial's roots in competition math and sees widespread usage in all mathematics contests.
Statement
Let be any polynomial with complex coefficients with roots , and let be the elementary symmetric polynomial of the roots.
Vieta’s formulas then state that This can be compactly summarized as for some such that .
Proof
Let all terms be defined as above. By the factor theorem, . We will then prove Vieta’s formulas by expanding this polynomial and comparing the resulting coefficients with the original polynomial’s coefficients.
When expanding this factorization of , each term is generated by a series of choices of whether to include or the negative root from every factor . Consider all the expanded terms of the polynomial with degree ; they are formed by multiplying a choice of negative roots, making the remaining choices in the product , and finally multiplying by the constant .
Note that adding together every multiplied choice of negative roots yields $-1)^$ (Error compiling LaTeX. Unknown error_msg)(-1)^j s_jP(x)x_{n-j}(-1)^j a_n s_jx^{n-j}a_{n-j}(-1)^j a_n s_j = a_{n-j}s_j = (-1)^j a_{n-j}/a_n\Box$
Problems
Here are some problems with solutions that utilize Vieta's formulas.