Vieta's formulas
In algebra, Vieta's formulas are a set of formulas that relate the coefficients of a polynomial to its roots.
(WIP)
Statement
Let be any polynomial with complex coefficients with roots , and let be the elementary symmetric polynomial of the roots with degree . Vietas formulas then state that This can be compactly written as if is any integer such that , then .
Proof
Let all terms be defined as above. By the factor theorem, ; we will then prove these formulas by expanding this polynomial. When expanding this polynomial, every term is generated by choices whether to include or from any factor .
Consider all the expanded terms of with degree ; they are formed by choosing of the negative roots, then by making the remaining choices . Thus, every term is equal to a product of of the negative roots multiplied by . If one factors out , we are left with the th elementary symmetric polynomial of the roots. Thus, when expanding this product, the coefficient of is equal to . However, we defined the coefficient of to be . Thus, = a_{n-j}, as required.
Provide links to problems that use vieta formulas: Examples: https://artofproblemsolving.com/wiki/index.php/2017_AMC_12A_Problems/Problem_23 https://artofproblemsolving.com/wiki/index.php/2010_AMC_10A_Problems/Problem_21
Proving Vieta's Formula
Basic proof: This has already been proved earlier, but I will explain it more. If we have , the roots are and . Now expanding the left side, we get: . Factor out an on the right hand side and we get: Looking at the two sides, we can quickly see that the coefficient is equal to . is the actual sum of roots, however. Therefore, it makes sense that . The same proof can be given for .
Note: If you do not understand why we must divide by , try rewriting the original equation as