2018 AMC 12B Problems/Problem 4

Revision as of 08:30, 20 September 2021 by MRENTHUSIASM (talk | contribs)

Problem

A circle has a chord of length $10$, and the distance from the center of the circle to the chord is $5$. What is the area of the circle?

$\textbf{(A) }25\pi \qquad \textbf{(B) }50\pi \qquad \textbf{(C) }75\pi \qquad \textbf{(D) }100\pi \qquad \textbf{(E) }125\pi \qquad$

Solution

Let $O$ be the center of the circle, $\overline{AB}$ be the chord, and $M$ be the midpoint of $\overline{AB},$ as shown below.

DIAGRAM NEEDED

Recall that $\overline{OM}\perp\overline{AB}.$ Since $OM=AM=BM=5,$ we conclude that $\triangle OMA$ and $\triangle OMB$ are congruent isosceles right triangles. It follows that $r=5\sqrt2,$ so the area of $\odot O$ is $\pi r^2=\boxed{\textbf{(B) }50\pi}$.

~MRENTHUSIASM

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png