2007 AMC 12A Problems/Problem 12

Revision as of 14:33, 10 September 2007 by Azjps (talk | contribs) (wik)

Problem

Integers $a, b, c,$ and $d$, not necessarily distinct, are chosen independently and at random from 0 to 2007, inclusive. What is the probability that $ad-bc$ is even?

$\mathrm{(A)}\ \frac 38\qquad \mathrm{(B)}\ \frac 7{16}\qquad \mathrm{(C)}\ \frac 12\qquad \mathrm{(D)}\ \frac 9{16}\qquad \mathrm{(E)}\ \frac 58$

Solution

The only times when $ad-bc$ is even is when $ad$ and $bc$ are of the same parity. The chance of $ad$ being odd is $\frac 12 \cdot \frac 12 = \frac 14$, so it has a $\frac 34$ probability of being even. Therefore, the probability that $ad-bc$ will be even is $\displaystyle \left(\frac 14\right)^2+\left(\frac 34\right)^2=\frac 58\ \mathrm{(E)}$.

See also

2007 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions