2021 JMPSC Invitationals Problems/Problem 14

Revision as of 16:29, 11 July 2021 by Mathdreams (talk | contribs)

Problem

Let there be a $\triangle ACD$ such that $AC=5$, $AD=12$, and $CD=13$, and let $B$ be a point on $AD$ such that $BD=7.$ Let the circumcircle of $\triangle ABC$ intersect hypotenuse $CD$ at $E$ and $C$. Let $AE$ intersect $BC$ at $F$. If the ratio $\tfrac{FC}{BF}$ can be expressed as $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime, find $m+n.$

Solution

[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(10cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -75.0614580781354, xmax = 144.30457756711317, ymin = -28.5847126201819, ymax = 97.17376695854563;  /* image dimensions */ pen ccqqqq = rgb(0.8,0,0); pen qqwuqq = rgb(0,0.39215686274509803,0);   draw((0,79.2489157968718)--(0,0)--(31.036632190371098,0)--cycle, linewidth(1));  draw((0,27.518773386755257)--(0,0)--(31.036632190371098,0)--cycle, linewidth(1));  draw((0,27.518773386755257)--(0,0)--(31.036632190371098,0)--(17.56520990745875,34.39792061246379)--cycle, linewidth(1));  draw((3.017805668614108,0)--(3.0178056686141086,3.017805668614108)--(0,3.017805668614108)--(0,0)--cycle, linewidth(1) + ccqqqq);  draw(arc((0,27.518773386755257),4.267821705160478,-90,-41.56194864878782)--(0,27.518773386755257)--cycle, linewidth(1) + qqwuqq);  draw(arc((31.036632190371098,0),4.267821705160478,138.43805135121218,180)--(31.036632190371098,0)--cycle, linewidth(1) + qqwuqq);  draw(arc((17.56520990745875,34.39792061246379),4.267821705160478,-117.05101221915062,-68.61296086793845)--(17.56520990745875,34.39792061246379)--cycle, linewidth(1) + qqwuqq);  draw(arc((17.56520990745875,34.39792061246379),4.267821705160478,-158.61296086793843,-117.0510122191506)--(17.56520990745875,34.39792061246379)--cycle, linewidth(1) + qqwuqq);  draw((16.464718299532908,37.20791514527062)--(13.654723766726086,36.10742353734477)--(14.755215374651927,33.29742900453795)--(17.56520990745875,34.39792061246379)--cycle, linewidth(1) + ccqqqq);   /* draw figures */ draw((0,79.2489157968718)--(0,0), linewidth(1));  draw((0,0)--(31.036632190371098,0), linewidth(1));  draw((31.036632190371098,0)--(0,79.2489157968718), linewidth(1));  draw((0,27.518773386755257)--(0,0), linewidth(1));  draw((0,0)--(31.036632190371098,0), linewidth(1));  draw((31.036632190371098,0)--(0,27.518773386755257), linewidth(1));  draw(circle((15.51831609518555,13.75938669337763), 20.73978921320061), linewidth(1));  draw((0,27.518773386755257)--(0,0), linewidth(1));  draw((0,0)--(31.036632190371098,0), linewidth(1));  draw((31.036632190371098,0)--(17.56520990745875,34.39792061246379), linewidth(1));  draw((17.56520990745875,34.39792061246379)--(0,27.518773386755257), linewidth(1));  draw((17.56520990745875,34.39792061246379)--(0,0), linewidth(1));   /* dots and labels */ dot((0,0),linewidth(4pt) + dotstyle);  label("$A$", (-2.9352712609233205,-2.124218048187195), SW * labelscalefactor);  dot((0,27.518773386755257),dotstyle);  label("$B$", (-3.362053431439368,28.319576781957252), W * labelscalefactor);  dot((31.036632190371098,0),dotstyle);  label("$C$", (32.345388168403296,-1.9819573246818474), NE * labelscalefactor);  dot((0,79.2489157968718),dotstyle);  label("$D$", (-1.2281425788591294,81.52508737295736), NE * labelscalefactor);  dot((17.56520990745875,34.39792061246379),linewidth(4pt) + dotstyle);  label("$E$", (18.119315817868372,35.57487368072999), NE * labelscalefactor);  dot((9.672839652798576,18.94230539953703),linewidth(4pt) + dotstyle);  label("$F$", (9.299150960536716,20.779758436173815), N * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */ [/asy]

$\mathbf{Lemma}:$ We claim that $EF$ is the angle bisector of $\angle BEC$.


$\mathbf{Proof:}$ Observe that $AB=5=AC$, which tells us that $\triangle ABC$ is a $45-45-90$ triangle. In cyclic quadrilateral $ABEC$, we have \[\angle ABC = 45^\circ = \angle AEC\] and \[\angle BAC+\angle BEC=180^\circ \implies \angle BEC = 90^\circ.\] Since $\angle BEA + \angle AEC = \angle BEC$, we have $\angle BEA =45^\circ = \angle AEC$. This means that $EA$, or equivalently $EF$, is an angle bisector of $\angle BEC$ in $\triangle BEC$.


$\mathbf{End~Proof}$


By the angle bisector theorem and our $\mathbf{Lemma},$ \[\frac{FC}{BF}=\frac{EC}{BE} \qquad (1).\] We seek the lengths $EC$ and $BE$.


To find $EC$, we can proceed by Power of a Point using point $D$ on circle $(ABC)$ to get $DE \cdot DC = DB \cdot DA.$ Since $DC=13$, $DB = 7$, and $AD = 12$, we have $DE=\frac{84}{13}.$ Since $CD=13$, we have \[EC=CD-DE=\frac{85}{13} \qquad (2).\] ~samrocksnature

See also

  1. Other 2021 JMPSC Invitational Problems
  2. 2021 JMPSC Invitational Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png