2009 AMC 10B Problems/Problem 18
Contents
Problem
Rectangle has and . Point is the midpoint of diagonal , and is on with . What is the area of ?
Solution 1 (Coordinate Geo)
Set to . Since is the midpoint of the diagonal, it would be . The diagonal would be the line . Since is perpendicular to , its line would be in the form . Plugging in and for and would give . To find the x-intercept of we plug in for and get . Then, using the Shoelace Formula for , , and , we find the area is .
Solution 2
By the Pythagorean theorem we have , hence .
The triangles and have the same angle at and a right angle, thus all their angles are equal, and therefore these two triangles are similar.
The ratio of their sides is , hence the ratio of their areas is .
And as the area of triangle is , the area of triangle is .
Solution 3 (Only Pythagorean Theorem)
Draw as shown from the diagram. Since is of length , we have that is of length , because of the midpoint . Through the Pythagorean theorem, we know that , which means . Define to be for the sake of clarity. We know that . From here, we know that . From here, we can write the expression . Now, remember . , since we set in the start of the solution. Now to find the area
Solution 4
We know by the Pythagorean theorem, and furthermore, is similar to . Therefore, , and the area of the triangle is .
See Also
2009 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.